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SUMMARY

The baroclinic stability of a family of two time-level, semi-implicit schemes for the 3D hydrostatic,
Boussinesq Navier–Stokes equations (i.e. the shallow water equations), which originate from the TRIM
model of Casulli and Cheng (Int. J. Numer. Methods Fluids 1992; 15:629–648), is examined in a simple
2D horizontal–vertical domain. It is demonstrated that existing mass-conservative low-dissipation semi-
implicit methods, which are unconditionally stable in the inviscid limit for barotropic flows, are unstable
in the same limit for baroclinic flows. Such methods can be made baroclinically stable when the integrated
continuity equation is discretized with a barotropically dissipative backwards Euler scheme. A general
family of two-step predictor-corrector schemes is proposed that have better theoretical characteristics than
existing single-step schemes. Copyright q 2006 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The 3D shallow water equations (SWE herein), also known as the hydrostatic primitive equations,
are frequently used to simulate flows in lakes, estuaries and coastal oceans (e.g. [1–3]). Such models
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are robust when advection, diffusion, baroclinic, and barotropic components are discretized with
numerical methods that are stable in the inviscid limit. An absolutely stable method may be
obtained if all terms are discretized implicitly in time; however, such fully coupled implicit
solutions of momentum, continuity and density transport have not been proven effective for large-
scale natural systems. Some recent progress in fully implicit barotropic solutions indicates future
potential [4], but extension to baroclinic flows with implicit coupling of density transport remains
an open question. Thus, numerical decoupling of the momentum solution and density transport is
used in most models of combined barotropic/baroclinic flows. This decoupling has been generally
accomplished in single-step non-iterative methods either by: (1) discretizing explicitly the baroclinic
contribution to momentum so that the time ‘n + 1’ velocity depends only on the density field at
time ‘n’ and earlier (e.g. [1, 5]), or (2) by solving the density transport equations based on time
‘n’ velocity information, and using the resulting time ‘n + 1’ density field in the estimates of the
baroclinic terms in the momentum equations (e.g. [6, 7]).

Beyond decoupling of density transport and momentum, practical models require some means
of addressing the disparity in time scales between the fast barotropic (free surface) waves and
the slower baroclinic/advective motions. If the barotropic mode is discretized explicitly, then the
time step required for stability is typically so small that the resulting model cannot be practically
used for large-scale systems. Common approaches to addressing the time-scale disparity are to use
either: (1) a mode-splitting approach (e.g. [5]), with a small time step for explicit time-advance
of the barotropic mode and a separate large time step for baroclinic and advective terms or (2) a
semi-implicit approach (e.g. [1]), wherein the free surface motion is discretized implicitly while
advection and baroclinic solutions are explicit. With the semi-implicit approach, the barotropic
Courant number may exceed unity and the solution uses a single time step, whose size is governed
by advective and baroclinic Courant–Friedrichs–Lewy (CFL) conditions. Both methods are often
combined with an implicit solution for vertical diffusion terms to prevent a diffusive vertical
stability limitation.

In the present work, we focus on the semi-implicit method, which has been used a num-
ber of recent baroclinic/barotropic flow models (e.g. [2, 8, 9]). It is well-known that formally
unstable numerical discretization methods can be used if sufficient viscosity (or diffusion) is
added, either directly via the viscous (diffusive) terms or indirectly through truncation error
in discretizations. It is generally hoped, although not always demonstrated, that such added
viscosity/diffusivity causes only minor additions to the physical dissipation/diffusion. However, in
flows with strong stratification, reliance on significant added dissipation/diffusion for stabilization
can cause problems: stratification may suppress vertical mixing and turbulence, so that the effective
turbulent viscosity and diffusivity may be reduced to near-molecular values. In such circumstances,
any numerical viscosity/diffusivity required for model stabilization is undesirable. It follows that
an ideal numerical discretization of the SWE should be stable in the inviscid limit without artificial
viscosity/diffusivity.

We are interested, in particular, in the simplest semi-implicit schemes that have proved both
popular and effective: the method of Casulli and Cheng [1], also known in the water resources
simulation literature as TRIM (tidal, residual, inter-tidal mudflat). The underlying semi-implicit
scheme has been developed extensively by the original author (e.g. [10–13]), has been adapted to
POM [5] as the ECOM-siz model [14] and is the basis for the ELCOM model [15]. These models
are in wide use throughout the coastal and inland water modelling communities, so their stability
characteristics are of wide interest. As originally proposed, the TRIM method can be classified as
a 2-level, single-step semi-implicit method. That is, it uses two time-levels of information (n and
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n + 1) and takes a single model step (from n to n + 1) to integrate forward in time. This can be
contrasted to more complicated semi-implicit 3-level schemes (e.g. [16]) that include time ‘n − 1’
data; 2-step barotropic predictor-corrector schemes [17] that perform an intermediate estimation
step; or the nonlinear-free surface method recently proposed in [7], based on previous work of
[6], in which two discrete versions of the continuity equation are solved in the same time step to
provide independent estimates of the cell thickness and the dynamic-free surface elevation. The
basic TRIM approach solves an integrated implicit solution of the free surface evolution equation
(which is formed by integrating continuity and applying the kinematic boundary condition). The
resulting free surface is used for the barotropic term in updating the time ‘n + 1’ velocities. A
combination of the computed time ‘n + 1’ and ‘n’ velocities and water column elevations are
typically used for scalar transport. Casulli and Cattani [10] demonstrated that the TRIM method
is unconditionally stable and has minimum dissipation for barotropic flows when the free surface
terms are discretized in a centred-time (i.e. Crank–Nicolson) scheme. They further showed that the
original backward-time (i.e. backward-Euler) scheme in [1] was extremely dissipative of barotropic
motions.

The TRIM model and other models based on the published method have been extensively
used in both model development (e.g. [11, 18, 19]) and site-specific studies (e.g. [9, 20–22]) for
both barotropic and baroclinic flows. Surprisingly enough, other than a simple baroclinic wave
speed CFL limitation noted in [19], the approach has never been analysed to determine the stability,
dissipation and phase propagation errors in representation of baroclinic processes. In this paper, we
demonstrate that the previously recommended centred-time approach for barotropic discretization
in the TRIM family of methods [10] is both theoretically and practically unstable in the linear
inviscid limit when used in baroclinic flows as discretized in [11, 19]. Of interest is that the
barotropically dissipative backward-time discretization of the barotropic mode is theoretically
baroclinically dissipation-free and stable for a forward-time discretization of the baroclinic mode.
We further demonstrate that in practice, the backward-time barotropic discretization with a forward-
time baroclinic discretization in a TRIMmethod is only baroclinically stable over long time scales if
the density interpolation to cell faces is (at least) slightly numerically diffusive. That is, use of non-
diffusive second-order spatial interpolation for density transport leads to a practical amplification
factors that are very slightly greater than unity instead of exactly unity. This result is still consistent
with our stability analysis as the latter does not include the density centre/face interpolation that
is necessary for the TRIM solution. As these results indicate some significant drawbacks to the
existing TRIM method, we examine the theoretical characteristics of a family of 2-level, 2-step
predictor-corrector schemes that may be more suitable for future model development.

The following presents: (Section 2) the general methodology for the stability analysis numerical
schemes, followed by (Section 3) results and discussion of the stability analysis, practical stability
of the TRIM method, and theoretical stability for a new predictor-corrector method, and finally
(Section 4), a summary of conclusions that can be drawn from this work.

2. METHODOLOGY

Our general approach is to provide a linear stability analysis of the baroclinic mode in a 2-level,
single-step TRIM method that is used for SWE simulations. We examine the linkage between the
baroclinic stability analysis and the SWE implementation in a baroclinic/barotropic solution. We
demonstrate that SWE simulations using the TRIM scheme with linearized momentum have the
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general stability characteristics predicted by the stability analysis. For simplicity in exposition while
retaining necessary local and global conservation properties in the numerical method, we neglect
nonlinear momentum terms while retaining nonlinearity in both barotropic/baroclinic coupling
and conservative transport of scalars (which are otherwise neglected in the stability analysis). Our
approach cannot prove absolute stability for a nonlinear implementation, but it demonstrates the
linear stability limits in both a theoretical and practical manner.

2.1. Governing equations

We are interested in establishing numerical stability in the linear inviscid limit, so we begin with
the incompressible, hydrostatic Euler equations with the Boussinesq approximation. For baroclinic
flows, numerical stability in the inviscid limit is a desirable property as stratification can suppress
turbulence, therefore, limiting turbulent vertical viscosity/diffusivity to near-molecular levels.

The governing equations considered for linear stability analysis in this work are

�u
�x

+ �w

�z
= 0 (1)

�u
�t

+ 1

�

�p
�x

= 0 (2)

�p
�z

+ g� = 0 (3)

��

�t
+ ��u

�x
+ ��w

�z
= 0 (4)

where u and w are the velocity components in the x and z directions, g is gravity, � is water density,
and p is the pressure. The transport of density in Equation (4) is the equivalent of transporting
an active scalar (e.g. temperature, salinity) with a linear equation of state. The 2D x–z equations
are used, rather than the full 3D equations as the fundamental stability issues for baroclinic flows
(without Coriolis) are inherently determined by basic horizontal/vertical motions of internal waves.

Equations (1)–(4) are inviscid and linear for momentum, which is consistent with: (1) a time-
invariant background density distribution (i.e. no turbulent mixing or viscous diffusion) and (2)
small-amplitude oscillations. This linearized model, when coupled with further linearization of
density transport, the hydrostatic and Boussinesq approximations, and neglect of barotropic/baro-
clinic coupling, admits an analytical solution useful for model verification (discussed in [23]).

2.2. The semi-implicit, baroclinic forward-time solution of inviscid SWE

The TRIM method outlined in [1] and succeeding papers applies implicit solution of integrated
continuity based on a �-weighting that can be adjusted to create a centred-time discretization
using � = 1

2 or a backward-time discretization using � = 1. For any �< 1
2 the TRIM method is

barotropically unstable. Discretization of the baroclinic term in the TRIM method [11] is forward-
time so that density transport is computationally decoupled from both momentum and continuity.
The TRIM approach, a semi-implicit, baroclinic forward-time method, is briefly described here
for the sake of clarity. The linkage between TRIM-style SWE models and the simplified methods
adopted in the stability analysis is presented below, referring to concepts introduced here.
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In the 3D SWE for density-stratified flows with a free surface, the pressure gradient may be
separated into its barotropic and baroclinic parts, i.e.

�p
�x

= g�0
��

�x
+ g

∫ �

z

�
�x

{�(z) + �′} dz (5)

This equation is obtained by integrating in depth and differencing the hydrostatic equation (3). Here,
� is the free surface displacement from equilibrium and the density �(x, z) has been decomposed
as �(x, z) = �0+�(z)+�′(x, z), where �0 is the reference density and �′ is the density perturbation
from the background (at rest) density profile �(z). Introducing Equation (5) and the Boussinesq
approximation in Equation (2) provides the linearized horizontal momentum equation as
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dz = 0 (6)

where the �+�′ notation (required for linear baroclinic equations, Section 2.3) may be conveniently
replaced with � without loss of generality. Solution of the hydrostatic equations requires an
additional equation for the free surface, which is obtained in the standard fashion by integrating
the continuity, Equation (1) over the water column and applying the kinematic boundary condition
at the free surface (e.g. [24]), resulting in

��
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−H
u dz = 0 (7)

Here, z =− H(x) is the depth of the bottom boundary measured from the undisturbed free surface
z = 0. No flux of water or temperature is allowed through the bottom or the free surface (imposed
boundary conditions).

Equations (1), (4), (6) and (7) are a closed set for numerical solution of u, w, �, and � and are an
inviscid 2D form of the more general SWE. The ‘�-method’ proposed by Casulli and Cattani [10]
is adopted herein. The method can be presented for a Cartesian Arakawa C (staggered) grid as
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where F and G are horizontal and vertical fluxes (further defined below), and the solution is
over vertical layers numbered k = 1 . . . kmax. Here, �z is the vertical dimension (thickness) of the
computational cells. Changes in free surface elevation are incorporated by changing the thickness
of the top-most computational cells, �zi,kmax (see [1] for example), according to

�zni,kmax
= �z0kmax

+ �ni

where �z0kmax
is a nominal time-invariant thickness for the top-most grid cells. In the most general

case, �z0kmax
will be different from the fixed time-invariant thickness for other subsurface cells. This

definition of cell thickness, in strict temporal agreement with the definition of the dynamic-free
surface elevation, contrasts with the definition used in the NLFS method of Campin et al. [7] in
which �z and � are allowed to lag in time. However, it can be noted that in the standard TRIM
formulation of Equation (8), the discretization of the baroclinic term has �zni,kmax

that is lagged

from the free surface discretization �n+1
i . For the present work, the free surface does not have

significant motion so there is no need for wetting/drying of computational cells as developed in
the TRIM models.

Equation (8) is the linearized momentum equation with the �-method for the barotropic term
and forward-time discretization of the baroclinic term. In Equation (9), the discrete approximation
of the horizontal volume flux rate from time ‘n’ to time ‘n + 1’ on cell face i + 1

2 is defined as a
combination of the time ‘n’ and ‘n + 1’ velocities as

Fn+�
i+1/2,k ≡ (1 − �)uni+1/2�z

n−1
i+1/2,k + �un+1

i+1/2�z
n
i+1/2,k (12)

where � is the same weighting parameter applied in momentum, Equation (8). Note that the use
of �zn−1 in this flux discretization is a subtlety that has been neglected in the literature (see
Appendix A). The vertical flux, Gn+�, over the time step and across the k ± 1

2 faces of all but the
top-most grid cells is obtained from Equation (10), which diagnostically enforces local continuity,
Equation (1), subject to the zero-flux bottom boundary condition Gi,1/2 = 0. Note that the method
is flux based and does not require explicit computation of a primitive vertical velocity. For the
top-most grid cells, local continuity requires that difference between volume fluxes entering in and
going out of grid cell must be equal to change of grid cell volume between time steps, i.e.

�n+1
i − �ni = (Gn+�

i,kmax−1/2 − Fn+�
i+1/2,kmax

+ Fn+�
i−1/2,kmax

) (13)

Equation (11) provides a discretization of conservative flux-based density transport, Equation (4),
that is consistent with continuity [25]. The density �n+1/2

i+1/2,k is the density at the ‘i + 1
2 ’ cell face

that is appropriate for time ‘n + 1
2 ’. Herein both central difference and quadratic interpolation

using the time ‘n’ density field are applied.
The numerical solution of the SWE following the general TRIM form of [10] requires substi-

tution of Equation (8) into (12) and then into Equation (9) to provide a banded-diagonal matrix
(tridiagonal in 2D) for the free surface position, �n+1. Momentum update is subsequently
provided by Equation (8), the vertical flux is diagnostically computed from Equation (10) and
density transport is subsequently obtained from Equation (11). In the present model we use a
conjugate gradient method for banded matrix solution similar to that proposed in [1, 10].
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2.3. Linear baroclinic equations and the analytical solution

To study the stability and phase propagation errors of the baroclinic discretization of two-level
semi-implicit methods, we consider the linear baroclinic equations (e.g. [19]), which are defined
in terms of the departure from the depth-averaged velocities for a system with a quiescent-free
surface, i.e.

u′ = u − 1

H + �

∫ �

−H
u dz (14)

The linear baroclinic equations are derived by subtracting the barotropic equations from the full
system of equations (see Appendix B for a detailed analysis), and are given by

�u′

�x
+ �w′

�z
= 0 (15)

�u′

�t
+ 1

�0

�p′

�x
= 0 (16)

�p′

�z
+ �′g= 0 (17)

��′

�t
+ w′ �

�z
�(z) = 0 (18)

where all variables have been previously defined (see Equation (5)). For our purposes, a linear
stratification is used as the background, such that

�(z) = − �z (19)

where z = 0 is the undisturbed free surface (positive z is upwards) and � is a constant (initial
condition). Using a linear stratification simplifies the following analysis.

The governing equations for stability analysis, Equations (15)–(18), are the linear, inviscid,
hydrostatic, baroclinic counterpart of the full SWE. The principal difference between a particle nu-
merical solution of the inviscid linearized SWE and the linear baroclinic equations is the neglected
linkage to the barotropic term. That is, Equation (16) a priori neglects the barotropic/baroclinic
coupling, which is a necessary part of a practical SWE model. Furthermore, the linearized equa-
tion for the density perturbation requires dropping the term ��u/�x from Equation (4) to obtain
Equation (18), i.e. the horizontal fluxes of density are neglected. Note, also, that density trans-
port in the perturbation form, Equation (18), is linear, so the spatial interpolation scheme to get
face values from densities defined at cell centres, appearing in Equation (11), is not represented
within the stability analysis. The resulting Equations (15)–(18) are, however, consistent with the
assumption of small-amplitude oscillations (see Appendix B for a detailed analysis), and identify
the stiffest process (propagation of internal waves due to constant stratification).

2.4. Forward-time baroclinic equations

To understand stability of the TRIM method, we develop an equivalent discretization of the linear
baroclinic equations, Equations (15)–(18). If �(x, t) ≈ 0 and the baroclinic wave amplitude is small,
then the SWE reduce to Equations (15)–(18) so the stability analysis of the latter equations should
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apply to the former. For simplicity, the primes are dropped in the following analysis. The discrete
time advance of ‘u’ and ‘�’ are found from Equations (16) and (18) using second-order spatial
differences that can be represented in the semi-discrete form as

�
�t

ui+1/2,k + 1

�0

pi+1,k − pi,k
�x

= 0 (20)

�
�t

�i,k + wi,k+1/2 + wi,k−1/2

2

��

�z
= 0 (21)

These evolution equations are numerically coupled only through the spatial discretizations of
continuity, Equation (15), and the pressure gradient, Equation (17), which can be represented
using second-order central differences as

u∗
i+1/2,k − u∗

i−1/2,k

�x
+ w∗

i,k+1/2 − w∗
i,k−1/2

�z
= 0 (22)

g
�∗
i ,k+1 + �∗

j,k

2
+ p∗

i ,k+1 − p∗
i,k

�z
= 0 (23)

where the superscript ‘∗’ indicates any consistent time-level.
To find the fully discrete forms of Equations (20) and (21) that are analogous to the TRIM

method, we note that TRIM applies an implicit solution of the barotropic term in momentum (i.e.
the �-method), Equation (8), but uses a forward-time discretization of the baroclinic term. We will
call this a baroclinic forward-time method as our focus is on the baroclinic term and the barotropic
mode is assumed zero in the stability analysis. A baroclinic forward-time discretization of the
linear baroclinic horizontal momentum, Equation (20), for an undisturbed free surface is

un+1
i+1/2,k − uni+1/2,k

�t
+ 1

�0

[
pni+1,k − pni,k

�x

]
= 0 (24)

where the pressure in a purely baroclinic flow is the hydrostatic pressure of the perturbed density
field. It follows that Equation (24) is equivalent to Equation (8) for �(x, t) = 0. Once the horizontal
velocity is known from Equation (24), the vertical velocity, wn+1, is computed from Equation (22)
where all ‘∗’ values are at time ‘n + 1’, and is a diagnostic solution rather than a time advance.
The density transport then follows from the known time ‘n’ and ‘n + 1’ vertical velocities as

�n+1
i,k − �ni,k

�t
+ 1

2
[(wn+1

i,k+1/2 + wn+1
i,k−1/2)� + (wn

i,k+1/2 + wn
i,k−1/2)(1 − �)] ��

�z
= 0 (25)

The �-weighting is included in Equation (25) to provide a discretization similar to flux weighing,
Equation (12), used in the TRIM density transport, Equation (11). Note that Equation (25), does
not include the horizontal fluxes of Equation (11), which are removed in the linearization for
Equation (18). As a final numerical step, the updated pressure field, pn+1, is computed diagnosti-
cally from Equation (23) using time ‘n + 1’ data.

Equations (8), (10) and (11) are the semi-implicit baroclinic forward-time discrete equations
of the SWE that are functionally equivalent to Equations (24), (22), and (25), respectively, of
the baroclinic forward-time method for the linear baroclinic equations. Note that Equation (23)
is developed from Equation (3), which becomes a trivial identity for the hydrostatic pressure
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relationship in the SWE solution. Because the equations are functionally equivalent in their discrete
forms, the behaviour of a SWE numerical solution for a linear baroclinic wave using the semi-
implicit baroclinic forward-time method is, as it will be shown, governed by the stability limits
developed for the baroclinic forward-time method below.

Although our focus is on the TRIM method, our stability analysis (below) is also applicable to
the NLFS method of [7]. If we introduce � in Equation (24) as a weighting for the pressure rather
than as a weighting for vertical velocity in Equation (25), that is

un+1
i+1/2,k − unj=i+1/2,k

�t
+ 1

�0

[
(pn+1

i+1,k − pn+1
i,k )� + (pni+1,k − pni,k)(1 − �)

�x

]
= 0 (26)

�n+1
i,k − �ni,k

�t
+ d�

dz

[
wn
i,k+1/2 + wn

i,k−1/2

2

]
= 0 (27)

then the scalar transport equations are first solved using Equation (27) followed by the solution
of the momentum equation (26), with the baroclinic pressure gradient terms calculated from a
density field which is obtained by some ‘averaging’ of the densities at time n and n + 1. This
baroclinic discretization is functionally equivalent to the NLFS method in [7]. Interestingly enough,
the characteristic equation (developed below) is unchanged when Equations (26) and (27) are used
in place of Equations (24) and (25), so the characteristic equation stability analysis presented in
the Results and Discussion section, and the conclusions drawn therein, are also applicable to the
baroclinic discretization of the NLFS method. However, we have not directly tested the NLFS
method, so stability behaviour in practical implementations remains an open question.

2.5. Stability analysis methods

For baroclinic wave analysis of the numerical discretization, we adopt a Fourier procedure similar
to surface gravity wave analysis used by Gray and Lynch [26] and attributed to Leendertse [27].
The general solution to Equations (15)–(18) is represented by a series of ‘m’ Fourier modes as

u′ =∑
m
Um
0 exp(i�mx + i�mz + i�mt) =∑

m
ûm (28)

w′ =∑
m

Wm
0 exp(i�mx + i�mz + i�mt) =∑

m
ŵm (29)

p′ =∑
m
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0 exp(i�mx + i�mz + i�mt) =∑

m
p̂m (30)

�′ =∑
m

�m
0 exp(i�mx + i�mz + i�mt) =∑

m
�̂m (31)

where � is the oscillation frequency. The horizontal and vertical wave numbers are � (= 2�/lx )
and � (= 2p/lz), where lx and lz are the horizontal and vertical wavelengths. For the linear
equations, solution of a single mode provides the solution for all modes. Hence, for simplicity,
mode superscripts and subscripts are dropped for analysis of a single generic mode.

The relationship between �, �, and � (dispersion relationship) for Equations (28)–(31) will be
valid for all wavelengths. This relationship can be found for the analytical case by substituting a
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single mode of Equations (28)–(31) into Equations (15)–(18), which yields

i�U0 + i�W0 = 0 (32)

i�U0 + i�

�
P0 = 0 (33)

i�U0 + g�0 = 0 (34)

i��0 + W0
d�

dz
= 0 (35)

Eliminating U0, W0, �0 and P0 from these four equations provides the analytical dispersion
relation

�2 = N 2
(

�

�

)2

(36)

where N is the constant background Brunt–Väisälä frequency, N 2 =− (g/�0)(��/�z). This
dispersion relation is the limiting hydrostatic case (waves with horizontal wavelengths much
longer than their vertical wavelengths) of the more general dispersion relation for non-hydrostatic
flows (e.g. [28]).

The ratio of the solution at time t+�t to that at time t is given by 	 = exp(i��t), and is known
as the amplification factor. The analytical value of �, from Equation (36), results in the analytical
amplification factor 	a as

	a = exp

(
iN

�

�
�t

)
= exp(i
) (37)

where it is convenient to define


 = N
�

�
�t (38)

Substituting Equations (28)–(31) into the finite difference approximation Equations (22)–(25),
provides an algebraic system of equations. The amplification factors for the numerical schemes are
the eigenvalues of the matrices for the time advance and they represent the numerical counterpart
of Equation (37), i.e.

	 = exp(i�N�t) = exp(i
N) (39)

The theoretical (	a) and discrete (	) amplification factors are used to characterize the phase and
amplitude errors associated with the discretization method (see Section 3). The characteristic
equation for the baroclinic forward-time approach can be found (see Appendix C for details) in
terms of the amplification factor, 	, as

	2 + (�B2 − 2)	 + (1 + B2[1 − �]) = 0 (40)

where B is a non-dimensional number, given by

B = N�z
�t

�x
sin

(
�
�x

2

)
tan−1

(
�

�z

2

)
(41)
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3. RESULTS AND DISCUSSION

3.1. Overview

A necessary condition for the stability of a numerical scheme is that the amplification factor,
Equation (39), obeys |	|�1. Furthermore, an ideal scheme would have low dissipation so that
internal waves may be modelled without artificial damping (however, there are some limits; see [29]
for a discussion of how numerical dissipation affects numerical diffusion). If |	| = 1 then the
numerical scheme is both stable and free from numerical dissipation (at the leading truncation
error order). Finally, a good numerical scheme will have low phase propagation error so that internal
waves propagate at the correct speeds. For the evaluation of phase errors, at a sufficiently fine spatial
discretization (�/�x�1 and �/�z�1) it follows from Equation (41) that B → �t N�/�, which
means that B ≈
 from Equation (38). For a given value of 
, the theoretical amplification factor
is 	a = exp(i
) while the numerical values are the complex roots of the characteristic equation for
	, i.e. Equation (40). The phase angle difference between the numerical roots of the characteristic
equation (	) and the theoretical root (	a) is the phase error of the method.

In the following, we show the results of the amplitude and phase error from the stability
analysis for the baroclinic forward-time method. We then show that the linearized TRIM semi-
implicit baroclinic forward-time behaves, in general, in accord with the predictions of stability
theory. Finally, we discuss the implications of this work on the development of practical, stable
low-dissipation methods for combined baroclinic/barotropic flows.

3.2. Baroclinic forward-time stability

The stability limitations for barotropic flows with the TRIM method were investigated in [10],
where � is used to set the time weighting of the free surface discretization (integrated continuity).
The semi-implicit baroclinic forward-time method shown above is the linearized equivalent of
adding a forward-Euler time ‘n’ baroclinic term to the momentum source term in [10], i.e. the
approach used in [11, 19]. The � in our baroclinic forward-time stability analysis, Equation (25),
is the same � as in [10], since consistency with continuity [25] requires that density transport
must use the same weighting as the barotropic discretization. Thus, when barotropic motions are
negligible, the effect of � in a baroclinic solution shows up only in the velocity field used for
the density transport. Casulli and Cattani [10] demonstrated that 1

2���1 is required for stability
in the solution of the barotropic mode, so this provides the limiting � range for our analysis.
Furthermore, they demonstrated that � = 1

2 has small barotropic numerical dissipation, whereas
� = 1 is strongly dissipative of barotropic motions. The � = 1

2 scheme is effectively a time-centred
(i.e. Crank–Nicolson) barotropic discretization that is nominally second-order in time, while any
�> 1

2 is nominally first-order in time. However, as demonstrated in [18], neither scheme reaches
its formal accuracy order for unsteady flows unless: (1) a correction is added for an implicit
linearization in the free surface and (2) a time step that meets the restrictive barotropic CFL
condition of c�t/�x<1, where c is the barotropic wave speed. Nevertheless, it is clear from the
significant dissipation of barotropic waves documented by Casulli and Cattani [10] for large �,
the preferred method for barotropic flows is � = 1

2 . It follows that an ideal baroclinic forward-time
method should have � = 1

2 so that when linked with a barotropic solution the method would retain
low barotropic dissipation.

The stability analysis for the baroclinic forward-time method, Figure 1, shows that the roots of
the characteristic equation fall outside the stability range for any �<1. The absolute value of the
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Figure 1. Baroclinic forward-time roots of the characteristic equation (40) for values of 1
2���1 that are

stable for barotropic flows. Only �= 1 is conditionally baroclinically stable in the inviscid linear limit.
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Figure 2. Baroclinic forward-time discrete amplification factor, 	, as a function of the stability characteristic,
B, from Equation (41). Note that where there are two values of |	| for one value of B, the larger value

governs stability and is therefore shown.

amplification factor, Figure 2, indicates the � = 1 method is conditionally stable for B�2, which
can be confirmed by substitution into Equation (40). It is interesting to note that the barotropic
solution with � = 1 is known to be extremely dissipative of barotropic wave energy [10]; however,
the roots of the characteristic equation for the baroclinic motion with � = 1 fall on the unit-circle
(Figure 1) so that |	| = 1 (i.e. non-dissipative results) for a wide range of B. Thus, the same
approach that is dissipative of barotropic wave energy is essentially conservative of baroclinic
energy. Prior model results with � = 1, though, have shown substantial dissipation of internal
waves over the course of long simulations (e.g. [15, 29, 30]), which is likely due to a combination
of (1) topographic effects, (2) long-term erosion of the pycnocline by numerical diffusion, and
(3) barotropic/baroclinic interactions that extract energy from the baroclinic mode into the barotropic
mode where it is quickly dissipated. The present theoretical stability results for the baroclinic
forward-time method are verified with numerical modelling below. Phase error for the baroclinic
forward-time method is shown in Figure 3. Although the � = 1 baroclinic forward-time method is
stable for the range 1<B�2, the phase error dramatically increases in this region and B<1 should
be preferred for good phase resolution.
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Figure 3. Baroclinic forward-time method phase error for different values of �. Note that only
� = 1 is stable. Negative values indicate that the numerical wave is slower than the analytical

solution (i.e. a lagging phase error).

3.3. Practical stability of the semi-implicit, baroclinic forward-time method

Semi-implicit models with baroclinic forward-time discretizations have been used extensively in
both research and engineering applications (see Introduction), so the above finding that the method
is inherently unstable for linear inviscid flows with �<1 deserves further investigation and practical
demonstration. A 2D numerical model was written for the present research to solve the inviscid,
linear, hydrostatic, Boussinesq, SWE in a rectangular domain on a Cartesian grid. The grid stencil
uses a standard Arakawa C grid with velocities on the faces and density at the cell centres. The
governing equations are discretized in a flux-conservative manner based on Equations (8)–(11).
As the stability analysis method does not limit the choice of face interpolation for the cell-centred
densities to the cell faces for the fluxes in Equation (11), the model was developed to use either
a centred-difference (CD) approximation or a quadratic upstream approximation (QUICK [31])
at the selection of the user. Note that the model uses linearized momentum, so the comparison
of CD vs QUICK is simply for the density interpolation. Results reported below investigate both
interpolation schemes. A few model runs were conducted with first-order upwind interpolation;
however, such results are not reported herein as simple upwinding is so diffusive of the density
structure that the internal wave behaviour is hopelessly compromised.

The model was applied to the problem of a linear internal seiche in an enclosed, rectangular, flat-
bottom basin with a background linear density profile, which has an analytical solution documented
by Eliason and Bourgeois [23] and others. The initial condition for the density field is given by

�(x, z) = �s − (D − z)
��

�z
+ a cos

(�x

L

)
sin
(�z

D

)
(42)

where the parameters for the model initial conditions are provided in Table I. The model conditions
are for a small-amplitude linear wave so that model conditions are consistent with the linearization
of the governing equations in the stability analysis.

The instability of the semi-implicit baroclinic forward-time method for � = 1
2 is illustrated in

Figure 4, where the kinetic energy is shown to increase exponentially with time over a wide range
of time step sizes. This instability occurs prior to T/4 except when a very large number of time
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Table I. Model parameters.

Parameter Symbol Value

Basin length L 28 160 m
Basin depth D 48 m
Initial density gradient ��/�z −3.64× 10−2 kg/m4

Surface density �s 1025.4 kg/m3

Initial wave amplitude a 0.02 m
Brunt–Väisälä frequency N 1.87× 10−2 s−1

Basin-scale internal seiche period T 55 h
Number of wave periods simulated 35
Horizontal grid spacing �x 220 m
Vertical grid spacing �z 1 m
Time step �t [10, 50, 100, 200 . . . 800] s
Number of horizontal grid cells 128
Number of vertical grid cells 48
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Figure 4. Evolution of kinetic energy, Ek, normalized by initial available potential energy, Ea(0), over
three baroclinic seiche wave periods (T ) using different time steps (�t) with � = 1

2 in the forward-time
method. Model set-up as in Table I with central difference approximation for density interpolation.

steps were used for each internal wave period (i.e. T/�t ∼ 2× 104 for which the instability occurs
at approximately 1.3T ). The instability is due to an amplification that scales with the time step,
so smaller time steps take longer to reach catastrophically unstable conditions. Animations of the
density field (not shown for brevity) indicate the instability begins as grid-scale oscillations in the
density field. For small time steps, these oscillations remain small for longer time, but eventually
grow to the entire depth of the water column. Additional experiments (not shown) conducted with
� = 0.9 and with QUICK in place of central differencing for density interpolation had qualitatively
similar results, but with slightly different instability onset.

In contrast to the unstable � = 1
2 results, the energy evolution for � = 1 shown in Figure 5 has

similar stable behaviours for a wide range of time step sizes, with instability starting rapidly once
a threshold is crossed. The results in Figure 5 are for a limited selection of T/�t and only for the
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Figure 5. Evolution of kinetic energy, Ek, normalized by initial available potential energy, Ea(0), over
three baroclinic seiche wave periods (T ) using different time steps (�t) with �= 1 in the forward-time

method. Model set-up as in Table I with central difference approximation for density interpolation.

central difference density interpolation; however, results for other values of T/�t>282 and results
for quadratic upwind interpolation are similar.

To compare the amplitude and phase error of the semi-implicit, baroclinic forward-time numeri-
cal method to the predictions of stability theory, it is necessary to define the relationship between B
in Equation (41) and the numerical method. Noting that the basin-scale internal seiche frequency is

�s = ND

L
(43)

then the Courant number for the basin-scale internal seiche is

Cs = ND

�

�t

�x
(44)

The maximum value of B associated with a discrete numerical solution can be estimated using
Equation (41) as

Bmax = ��z

D
Cs sin

(
max[kx ] �x

2

)
tan−1

(
min[kz] �z

2

)
(45)

where max[kx ] is the largest possible horizontal wave number disturbance represented on the model
grid, i.e. kx = �/�x for a disturbance of length 2�x . Similarly, min[kz] is the smallest possible
vertical wave number disturbance represented on the grid, i.e. kz = �/D for a disturbance of length
2D. Evaluating the sin and tan functions in Equation (45) for �z�D, it follows that

Bmax ≈ 2Cs (46)

Thus, the result that B<2 is generally required for stability of explicit methods is consistent with
an outer limit of Cs<1. Note that this stability limit is for a disturbance that begins at the smallest
horizontal spatial scale and propagates upscale.

To examine the model results, we analyse the kinetic energy signature, which has a frequency
that is twice the basin-scale seiche. Any linear wave will have two kinetic energy peaks in each
wave period (i.e. when the isopycnals are flat, all of the wave available potential energy has
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been converted into kinetic energy). The model practical stability must correspond to the peak
behaviour—e.g. continually increasing peak kinetic energy values are a sign of an unstable solution.
Over the 35 wave periods simulated, an exponential of the form

Efit = c1 exp

(
c2

t

T

)
(47)

is fitted to the peak kinetic energy values with typical results shown in Figure 6. The R2 values
for the regression and the root-mean-square (RMS) difference between the exponential fit and the
normalized kinetic energy are shown in Table II, indicating good agreement. Note that linear fits
would have been just as successful for the present results; however, the exponential fit is consistent
with expected behaviour, according to the stability analysis. The model amplification factor for
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Figure 6. Examples of normalized maximum kinetic energy in each wave period, max(Ek) and the best-fit
line used to compute the amplification factor. Results shown are for �= 1 and T/�t = 282 for central

difference (CD) and upwind quadratic (QUICK) approximations of face densities.

Table II. Kinetic energy fit.

CD QUICK

T/�t R2 RMS R2 RMS

282 0.9 6.6× 10−3 0.69 8.0× 10−4

329 0.86 7.1× 10−3 0.67 8.1× 10−4

395 0.85 7.0× 10−3 0.66 8.1× 10−4

494 0.83 7.0× 10−3 0.62 8.2× 10−4

658 0.80 7.0× 10−3 0.56 8.1× 10−4

988 0.80 6.8× 10−3 0.47 8.2× 10−4

1975 0.78 7.0× 10−3 0.38 8.9× 10−4

3951 0.75 7.2× 10−3 0.33 9.6× 10−4

19 755 0.76 6.8× 10−3 n/a n/a
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the ‘nth’ peak is estimated from the fitted exponential line as

	m(n) ≈ E(n)

E(n − 1)
(48)

The simulation wave period for the ‘nth’ peak is computed from

Tm(n)= t (n) − t (n − 1) (49)

where t (n) is the time to the ‘nth’ peak. For each simulation, the mean wave period computed
over 35 wave periods was approximately 1.98× 105 s, with a maximum standard deviation in
any simulation of 290 s. Thus, all simulations have consistent wave periods over the entire the
simulation time and can be characterized by the mean period or its inverse, the mean basin-scale
seiche frequency.

Using the above approach, the amplification factors for all the � = 1 simulations for Bmax<2 are
shown in Figure 7. Note that both central difference and upwind quadratic approximations of the
cell-face densities result in |	| ∼ 1, however, the central difference results show an amplification
factor slightly greater than unity while the quadratic upstream is slightly less. All results remained
stable for the 35 wave periods simulated. Note that this corresponds to 80 days of simulation for
a 30 km long basin, so is of reasonably good stability. However, central difference simulations
over longer times (not shown) eventually becomes unstable due to the amplification factor being
marginally greater than unity. In contrast, the quadratic upstream difference approach did not show
any long time-scale instability, which is consistent with the amplification factor being marginally
smaller than unity. Note that for Bmax>2, kinetic energy showed exponential increases and therefore
large 	 for both upwind quadratic and central difference methods. Results for Bmax>2 are all
unstable and similar to the results for T/�t = 247 in Figure 5.

0 1 2

0

B
max

| λ
|

1 CD
QUICK
stability theory

Figure 7. Comparison of stability theory and mean amplification factor for 17 stable simulations of the
semi-implicit, baroclinic forward-time numerical method for � = 1 and varying Bmax. Amplification factors
are small for both methods, but show 	>1 for central difference (CD) and 	<1 for upwind quadratic
(QUICK) difference. Error bars are not shown as maximum standard deviation in 	 (computed from 35

wave periods) for any simulation is 2.1e−6.
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3.4. Towards an improved SWE 2-level method

The above analysis shows that the semi-implicit, baroclinic forward time method, as popularized
by the 2-level TRIM method, is only baroclinically stable in the inviscid limit for � = 1, which
is undesirable for a barotropic/baroclinic flow due to high barotropic dissipation [10]. One might
think of this result as requiring a backward-time discretization in the barotropic term to stabilize the
otherwise unstable forward-time discretization of the baroclinic term. This idea leads us to ponder
whether a method with better stability characteristics might be developed through a centred-time
discretization for the baroclinic term, which might then allow a centred-time discretization for
the barotropic term (i.e. � = 1

2 ). Clearly, if we simply attempt to apply a simple Crank–Nicolson
discretization of the baroclinic term in momentum, we will require an implicit coupling of density
transport with momentum, an undesirable property. However, an alternative approach that allows an
approximate centred-time discretization of the baroclinic term without implicit coupling is to invoke
a predictor-corrector scheme. In the following, we show that a baroclinic predictor-corrector method
can be made theoretically stable with � = 1

2 . As there are a number of possible implementation
approaches for a semi-implicit, baroclinic predictor-corrector scheme, the development and testing
of such a method remains a subject for future investigation. Our goal in the following analysis is
to demonstrate that this is a reasonable line of investigation for future model development.

The general scheme for the proposed baroclinic predictor-corrector method is (1) explicit pre-
diction of a horizontal and vertical velocities from time ‘n’ data, (2) prediction of density transport
from a weighted sum of the predicted velocities and the time ‘n’ velocities, (3) correction of
horizontal velocity with a baroclinic term based on a weighted sum of the predicted density field
and the time ‘n’ density field. To illustrate in more detail, horizontal momentum for a predicted
velocity, up, can be obtained from a baroclinic forward-time discretization as

upi+1/2,k − uni+1/2,k

�t
+ pni+1,k − pni,k

�0�x
= 0 (50)

The predicted vertical velocity, wp is computed from Equation (22) with ‘∗’ superscripts replaced
by ‘p’.

Once the predicted velocity field is known, predicted density (�p) transport is

�pi,k − �ni,k
�t

+ 1

2
[(wp

i,k+1/2 + w
p
i,k−1/2)�p + (wn

i,k+1/2 + wn
i,k−1/2)(1 − �p)]��

�z
= 0 (51)

where �p is a weighting factor which must meet the condition 0��p�1, but otherwise may be
independently adjusted to develop a family of possible models. The predicted pressure, pp, is
obtained from Equation (23), which is used in a horizontal velocity corrector as

un+1
i+1/2,k − uni+1/2,k

�t
+ (ppj+1,k − ppj,k)�b + (pnj+1,k − pnj,k)(1 − �b)

�0�x
= 0 (52)

where the weighting factor for the baroclinic term, �b, must meet the condition 0��b�1 but may
otherwise be independently set to provide a family of possible predictor-corrector schemes. Note
that for �b = 0, the predictor step is irrelevant and the discretization collapses to the simple baroclinic
forward-time discretization analysed above. For �b = 1

2 , the baroclinic pressure is centred-time and
is nominally second-order accurate. To complete the method, vertical velocity, wn+1, is corrected
using Equation (22) again with ‘∗’ replaced by ‘n+1’. The density transport for �n+1 is identical to
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Equation (25) of the baroclinic forward-time method, including a � weighting factor for consistency
with continuity. The time n + 1 pressure is computed from Equation (23) with the time n + 1
values for density.

The characteristic equation for the baroclinic predictor-corrector method can be derived
(following a procedure similar to Appendix C) as

	2 + {B2(� + �b) − B4��p�b − 2}	 − B2(� + �b − 1) + B4�p�b(� − 1) + 1= 0 (53)

which has three independent choices for parameters (�, �p, �b) and B is given by Equation (41).
The coefficient � is the weighting between time ‘n’ and ‘n + 1’ for the momentum and free
surface equations (identical to the � in the semi-implicit, baroclinic forward-time method). The
new coefficients in the method are �p, a weighting for the predictor equations, and �b, the weighting
of the baroclinic transport between time ‘n’ and predicted density fields. For stability, we examine
the sets of (�, �p, �b) provided in Table III. Note that there is no need to test �< 1

2 since such
settings are barotropically unstable and therefore not of interest. Furthermore, any case with �b = 0
will reduce to the baroclinic forward-time method (analysed above) since the density predictor has
no effect on the velocity update in Equation (52) under such conditions.

Figures 8 and 9 show the roots of the characteristic equation that indicates that all forms of the
baroclinic predictor-corrector approach are (at least) conditionally stable, i.e stable for some range
of B. This finding is a dramatic contrast to the results for the baroclinic forward-time method in
Figure 1, wherein only the � = 1 case is stable. Of interest is that only the case [ 12 , 0, 1

2 ] lies on the
unit-circle (see Figure 9) and is thus the only candidate for a model without numerical dissipation
in the baroclinic mode. For this choice of parameters, the characteristic equation coincides with that
of the baroclinic forward-time method. However, it should be noted that the predictor-corrector
method obtains this characteristic equation with a non-dissipative method for the free surface
(� = 1

2 ), whereas the forward-time method requires a dissipative-free surface (� = 1). In general,

Table III. Predictor-corrector methods examined for stability.

� 1 1 1 1 1 1 1/2 1/2 1/2 1/2 1/2 1/2
�p 1 1 1/2 1/2 0 0 1 1 1/2 1/2 0 0
�b 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2 1 1/2
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Figure 8. Stable predictor-corrector roots of characteristic equation (53) for �= 1. For clarity, roots along
the real axis (both stable and unstable) have been removed.

Copyright q 2006 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:237–268
DOI: 10.1002/fld



256 F. J. RUEDA, E. SANMIGUEL-ROJAS AND B. R. HODGES

1
Re

1.0i

0.5i

Im

[ θ   , θ
p
  , θ

b
]

stable

unstable

[1/2 , 1   , 1   ]
[1/2 , 1   , 1/2]
[1/2 , 1/2, 1   ]
[1/2 , 1/2, 1/2]
[1/2 , 0   , 1   ]
[1/2 , 0   , 1/2]

Figure 9. Predictor-corrector roots of characteristic equation (53) for � = 1
2 . For clarity, roots along the

real axis (both stable and unstable) have been removed.
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Figure 10. Predictor-corrector discrete amplification factor, 	, as a function of the
stability characteristic, B, from Equation (41) for �= 1.

it appears that the � = 1
2 results (Figure 9) for various �p and �b are less dissipative (larger |	|)

than the corresponding cases for � = 1 (Figure 8). Thus, the baroclinic predictor-corrector scheme
has the desired behaviour (compared at baroclinic forward-time) in that � = 1

2 is stable so that a
SWE numerical scheme can be designed with minimum barotropic dissipation.

In Figures 10 and 11, the relationship between B and the amplification factor is shown for
the baroclinic predictor-corrector method. It can be seen that stability (|	|�1) requires a lower
value of B than associated with the baroclinic forward-time method shown in Figure 2. In Figure
10, with � = 1, it can be noted that prior to instability, the results fall on two consistent lines,
depending on the value of �b. For �b = 1, the three darker lines are all overlaid until B ∼ 0.7,
and show significantly more dissipation than the lighter lines (�b = 1

2 ) that remain overlaid until
B ∼ 1.2. Thus, we conclude that the higher values of �b tend to increase baroclinic dissipation and
reduce the stability of the method. Indeed, this observation is consistent with the performance in
the limit of �b = 0, which reduces the baroclinic predictor-corrector to the baroclinic forward-time
method (Figure 2) that shows stability for B�2 and zero dissipation for � = 1. Also of note, in
Figure 10 the case where �b = �p = 1

2 is stable for B<2, and does not have the rapid development
of the instability shown by other schemes.
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Figure 11. Predictor-corrector discrete amplification factor, 	, as a function of the
stability characteristic, B, from Equation (41) for � = 1
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Figure 12. Baroclinic predictor-corrector discrete amplification factor, 	, as a function of the stability
characteristic B, from Equation (41) for �b = 1

2 .

Figure 11 has some similarity to Figure 10 in that the results for �b = 1 are similar up until
B ∼ 0.5, while results for �b = 1

2 are similar up until B ∼ 0.7. Again, we find the �b = 1
2 case is

generally less dissipative and has a higher value of B prior to instability developing. Also similar
to Figure 10, the case of �b = �p = 1

2 remains stable for B<2, without the rapid development of
instability seen in other configurations. In Figure 12, a direct comparison of results for �b = 1

2
confirms that �p = 1 shows rapid instability, �p = 1

2 provides stability out to B ∼ 2 (albeit with
dissipation), and �p = 0 provides very different results: dissipative with rapid instability for � = 1,
but dissipationless and stable to B ∼ 2 for � = 1

2 . Clearly, the complexity of the stability behaviour
for the baroclinic predictor-corrector method contrasts strongly the behaviour of the baroclinic
forward-time method. Indeed, the lesson that the baroclinic forward-time method (stable only for
� = 1) has no applicability to the baroclinic predictor-corrector method, which is unstable at a
lower B with � = 1 than for � = 1

2 .
The theoretical phase error of the predictor-corrector method is shown in Figures 13 and 14.

It can be seen that the best phase error performance (i.e. over the largest range of B and for
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Figure 13. Predictor-corrector method phase error for �= 1.
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Figure 14. Predictor-corrector method phase error for �= 1
2 .

the range of parameter values analysed) is for [�, �p, �b] = [1, 1
2 ,

1
2 ]. However, it appears that the

preferable approaches would be the cases [ 12 , 1
2 ,

1
2 ] and [ 12 , 0, 1

2 ], which have small phase error for
B< 1

2 along with low dissipation (Figure 11). The theoretical behaviour of alternative [�, �p, �b]
sets in the predictor-corrector method can be assessed by analysing the form of the numerical
amplification factor, which is given by

	 = exp i


{
1 + i

(�b + � − 1)

2

 +

[
�b + �

2
− (�b + �)2

8
− �b�p

2
− 1

3

]

2

+ i

[
(�b + �)2

4
− �b + �

2
+ �b�p

2
− �b�p�

2
+ 1

4

]

3 + O(
4)

}
(54)

where 
 is given by Equation (38). The above expression can be derived by substituting

	 = exp i
[1 + a
 + b
2 + c
3 + O(
4)] (55)
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into the characteristic equation, expanding the result in Taylor series for small 
, and setting to zero
the resulting polynomial coefficients. It is presumed here that a sufficiently fine spatial resolution is
used. The coefficient a will be zero if the condition �+�b = 1 is satisfied. For [�, �p, �b], such that
�+�b = 1, the predictor-corrector scheme provides a second-order approximation of 	a = exp[i
].
For � + �b<1, the method is unstable as |	|>1. For � + �b>1, the method becomes dissipative,
with dissipation levels increasing for larger � + �b. A necessary condition for the method to be
neutrally stable is a requirement that

� + �b = 1 (56)

To be dissipationless a second requirement is c= 0, which when combined with Equation (56)
becomes

�b�p(1 − �) = 0 (57)

The conditions of Equations (56) and (57) can also be derived from characteristic equation (54). If
the zero-order polynomial coefficient in Equation (54) is unity, then the roots appear as a complex
conjugate pair whose product is unity. It follows that their absolute values are both unity and the
method is neutrally stable.

As shown in [3], slightly dissipative, phase-accurate algorithms can be designed from the
analysis of the numerical amplification factor. Using a slightly dissipative baroclinic method may
be desirable in a nonlinear hydrostatic model to prevent artificial steepening of internal waves [29].
For the baroclinic predictor-corrector method, dissipation can be enforced by requiring a = 0 and
b= 0 in Equation (55), while requiring c �= 0. The numerical amplification factor for � + �b = 1
(a = 0) is given by

	 = exp i


(
1 + �b�p − 1/12

2

2 + O(
3)

)
(58)

Hence, if �p�b = 1
12 , the algorithm becomes third-order accurate with a dissipative leading order

truncation term. For example, for [�, �b] = [ 12 , 1
2 ], the choice �p = 1

6 yields the most phase-accurate
algorithm. For �p�b< 1

12 the method would exhibit a positive dispersion (i.e. a faster wave as the
baroclinic forward-time method), while for �p�b> 1

12 result would be a negative dispersion. The
choice [�b, �] = [0, 1] provides a behaviour equivalent to that of the baroclinic forward-time method,
but has a dispersive leading order truncation term.

4. CONCLUSIONS

From the analysis of the semi-implicit, baroclinic forward-time method, we can draw three
principal observations. First, and most important, any mass-conservative, two-level, single step,
semi-implicit, baroclinic forward-time model of the SWE with �<1 will be linearly unstable (in
the inviscid limit) to small perturbations of the density field. However, from successful prior results
in the literature we speculate that this method may be stabilized directly by the addition of viscous
(diffusive) terms or indirectly through truncation error in discretizations. Secondly, applying a
� = 1 semi-implicit solution to the SWE is stable in the inviscid limit, but as a practical matter
may show long-time instability if central differences are used for cell-face density interpolation.
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Using upwind quadratic interpolation for cell-face densities is slightly dissipative and so prevents
long-time-scale instability. The implication of this work is that the preferred configuration for
non-dissipative simulation of barotropic flows (� = 1

2 ) is inherently unstable for baroclinic flows,
whereas the stable method for baroclinic flows (�= 1) has previously been shown [10] to be highly
dissipative for barotropic flows.

As a possible approach to obtaining a stable method with acceptably small dissipation for
both barotropic and baroclinic flows, we examined the stability of a family of proposed 2-level
baroclinic predictor-corrector schemes. This family uses separate weightings for momentum con-
tinuity (�), predictor continuity (�p) and the baroclinic term (�b). Selection of different values for
(�, �p, �b) provides methods with different stability characteristics. The new approach is shown to
be conditionally stable for � = 1

2 , which should allow development of a model that is stable for
both barotropic and baroclinic modes that does not have the barotropic dissipation caused by using
the baroclinic forward-time method at � = 1. Development and testing of this method is provided
in [32].

APPENDIX A: CONSISTENCY IN FLUX DISCRETIZATION

If Equation (12) is substituted into Equation (9), the discretization of depth-integrated continuity,
Equation (7) becomes

�n+1
i = �ni − (1 − �)

�t

�x

(∑
k
uni+1/2�z

n−1
i+1/2,k −∑

k
uni−1/2�z

n−1
i−1/2,k

)

−�
�t

�x

(∑
k
un+1
i+1/2�z

n
i+1/2,k −∑

k
un+1
i−1/2�z

n
i−1/2,k

)
(A1)

Note that the above is slightly different than prior formulations in the literature in that the time
‘n − 1’ values instead of the time ‘n’ values for �z are used in the discretization of the time ‘n’
barotropic term. This approach provides a more consistent definition of the velocity field, as shown
below.

Consistent with Equation (12), the relationship between the vertical flux (G) and the primitive
velocity (w) is given by

Gn+�
i,k+1/2 ≡�x{(1 − �)wn

i,k+1/2 + �wn+1
i,k+1/2} (A2)

Local continuity, Equation (10), with substitutions for flux definitions from Equations (12) and
(A2), provides (without simplification)

wn+1
i,k+1/2 = wn+1

i,k−1/2 − 1

�x
(un+1

i+1/2,k�z
n
i+1/2,k − un+1

i−1/2,k�z
n
i+1/2,k) −

(
1 − �

�

)

×
{
wn
i,k+1/2 − wn

i,k−1/2 + 1

�x
(uni+1/2,k�z

n−1
i+1/2,k − uni−1/2,k�z

n−1
i−1/2,k)

}
(A3)
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The initial conditions are thus required to meet the condition that

w0
i,k+1/2 − w0

i,k−1/2 + 1

�x
(u0i+1/2,k�z

(−1)
i+1/2,k − u0i−1/2,k�z

(−1)
i−1/2,k) = 0 (A4)

where �z(−1) is the grid cell height in the time step before the start of the simulation. If this
condition is met, then the bracketed term in Equation (A3) will vanish at all times and the vertical
velocity is simply

wn+1
i,k+1/2 = wn+1

i,k−1/2 − 1

�x
(un+1

i+1/2,k�z
n
i+1/2,k − un+1

i−1/2,k�z
n
i+1/2,k) (A5)

which is a simple discretization of continuity, Equation (1), with a time-lagged vertical grid
spacing. Thus, the above approach guarantees that the vertical velocity and the horizontal velocity
will always locally satisfy continuity with a time-step-lagged vertical grid size. Note that Equation
(A5) must also hold for any ‘n’ time step as follows:

wn
i,k+1/2 = wn

i,k−1/2 − 1

�x
(uni+1/2,k�z

n−1
i+1/2,k − uni−1/2,k�z

n−1
i+1/2,k) (A6)

So if �zn is used in place of �zn−1 in Equation (A1), this is equivalent to doing the same to
Equation (A3). It follows that Equation (A5) will not generally hold since it would also require

wn
i,k+1/2 = wn

i,k−1/2 − 1

�x
(uni+1/2,k�z

n
i+1/2,k − uni−1/2,k�z

n
i+1/2,k) (A7)

which cannot be simultaneously true with Equation (A6) for non-trivial flow fields. It follows that
un in Equation (12) must be multiplied by �zn−1 for consistent enforcement of continuity.

APPENDIX B: DERIVATION OF THE MODEL EQUATIONS

The dynamics of an inviscid fluid in a 2D domain (without Coriolis) may be described by the
momentum equations with the Boussinesq approximation (i.e. density is assumed constant in all
terms except in the gravitational term),

�u
�t

+ u
�u
�x

+ w
�u
�z

=− 1

�0

�p
�x

(B1)

�w

�t
+ u

�w

�x
+ w

�w

�z
=− 1

�0

�p
�z

− �g

�0
(B2)

and the conservation of mass (continuity),

��

�t
+ �(�u)

�x
+ �(�w)

�z
= ��

�t
+ �

(
�u
�x

+ �w

�z

)
+ u

��

�x
+ w

��

�z
= 0 (B3)

We non-dimensionalize Equations (B1)–(B3) by introducing the characteristic scales L , H , c,
U and the reference density �0 at the free surface, and two dimensionless parameters �, �. The
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resulting non-dimensional variables are as follows:

(x, y, z) = L(x∗, y∗, �z∗)

� = H

L
�1

c=√gH

�= U

c
�1

t = L

c
t∗

(u, v, w)= �c(u∗, v∗, �w∗)

� = �0�
∗

p= �0c
2 p∗

Introducing above scales into Equations (B1)–(B3), rearranging and dropping ∗, provides

�
�u
�t

+ �2
(
u

�u
�x

+ w
�u
�z

)
= −�p

�x
(B4)

��2
�w

�t
+ �2�2

(
u

�w

�x
+ w

�w

�z

)
=−�p

�z
− � (B5)

��

�t
+ ��

(
�u
�x

+ �w

�z

)
+ �

(
u

��

�x
+ w

��

�z

)
= 0 (B6)

For incompressible flow the second term in Equation (B6) evaluates as

��

(
�u
�x

+ �w

�z

)
= 0 (B7)

So Equation (B6) reduces to

��

�t
+ �

(
u

��

�x
+ w

��

�z

)
= 0 (B8)

Comparing the governing equations (1)–(4), against Equations (B4), (B5), (B7), and (B8), it
can be seen that the former are an O(�2 + ��2) approximation of the latter. However, Equation
(4), is nonlinear and must be further linearized in the stability analysis, as shown in Equation
(18). Nevertheless, we can demonstrate that the linear equations for the stability analysis are an
approximation of the nonlinear equations with a truncation error of O(�2). We introduce a regular
perturbation expansion with small parameters � and � whose magnitudes relative to � and � are to
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be determined [33]
u = u0 + �u1 + O(�2) (B9)

w =w0 + �w1 + O(�2) (B10)

p= p0 + �p1 + O(�2) (B11)

�= �0 + ��1 + O(�2) (B12)

Substituting Equations (B9)–(B12) into Equations (B4), (B5), (B7), and (B8) provides

�p0
�x

+ �
�u0
�t

+ �
�p1
�x

+ O(�2) = 0 (B13)

�p0
�z

+ �0 + �

(
�p1
�z

+ �1

)
+ O(�2) = 0 (B14)

�

(
�u0
�x

+ �w0

�z

)
+ O(��) = 0 (B15)

��0
�t

+ �
��1
�t

+ �

(
u0

��0
�x

+ w0
��0
�z

)
+ O(��) = 0 (B16)

We require O(�) = O(�) = O(�)�O(�2), which allows Equations (B13)–(B16) to be written as

�p0
�x

+ �

(
�u0
�t

+ �p1
�x

)
+ O(�2) = 0 (B17)

�p0
�z

+ �0 + �

(
�p1
�z

+ �1

)
+ O(�2) = 0 (B18)

�

(
�u0
�x

+ �w0

�z

)
+ O(�2) = 0 (B19)

��0
�t

+ �

(
��1
�t

+ u0
��0
�x

+ w0
��0
�z

)
+ O(�2) = 0 (B20)

To obtain the approximation

(u, w, p, �) = (u0, w0, p0 + �p1, �0 + ��1) + O(�2) (B21)

to the desired order, O(�2), it is necessary that terms of similar order must cancel. It follows that
O(1) terms must satisfy

�p0
�x

= 0 (B22)

�p0
�z

+ �0 = 0 (B23)
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��0
�t

= 0 (B24)

Similarly, the O(�) terms must satisfy

�u0
�t

+ �p1
�x

= 0 (B25)

�p1
�z

+ �1 = 0 (B26)

�u0
�x

+ �w0

�z
= 0 (B27)

��1
�t

+ u0
��0
�x

+ w0
��0
�z

= 0 (B28)

Equations (B22)–(B24) imply that �0 = �0(z) and p0 = p0(z), so that Equation (B28) can be
written as

��1
�t

+ w0
��0
�z

= 0 (B29)

Thus, the solution to Equations (B25)–(B27) and (B29) are an O(�2) approximation of Equations
(B1)–(B3). As shown by Camassa and Holm [33], the following equations:

u′ = �cu∗
0

w = �c�w∗
0

p= �0c
2 p∗

0

p′ = �0c
2�p∗

1

� = �0�
∗
0

�′ = �0��
∗
1

are correct to O(�2). Substituting those equations into Equations (B25)–(B27) and (B29) we
obtain dimensional equations that are identical to Equations (15)–(18) used in the linear stability
analysis. It follows that the solution set of (u′, w′, p + p′, � + �′) for Equations (15)–(18) is an
O(�2) approximation of the solution to the governing equations (1)–(4).

APPENDIX C: CHARACTERISTIC EQUATION FOR BAROCLINIC
FORWARD-TIME METHOD

Considering the governing equations (15)–(18), we substitute one term ‘m’ of the general modal
solution, Equations (28)–(31), into the discrete equations (22)–(25). Only one term is necessary
since the discrete equations are linear and the behaviour of each term of the series is the same as
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the series itself. The result of the substitution is

Um
0

�x
{ei�m(x+ �x

2 )ei�mzei�m(t+�t) − ei�m(x− �x
2 )ei�mzei�m(t+�t)}

+Wm
0

�z
{ei�mxei�m(z+ �z

2 )ei�m(t+�t) − ei�mxei�m(z− �z
2 )ei�m(t+�t)} = 0 (C1)

g
�m

0

2
{ei�mxei�m(z+�z)ei�m(t+�t) + ei�mxei�mzei�m(t+�t)}

+ Pm
0

�z
{ei�mxei�m(z+ �z

2 )ei�m(t+�t) − ei�mxei�m(z− �z
2 )ei�m(t+�t)}= 0 (C2)

Um
0

�t
{ei�m(x+ �x

2 )ei�mzei�m(t+�t) − ei�m(x+ �x
2 )ei�mzei�mt }

+ Pm
0

�0�x
{ei�m(x+�x)ei�mzei�mt − ei�mxei�mzei�mt } = 0 (C3)

�m
0

�t
{ei�mxei�mzei�m(t+�t) − ei�mxei�mzei�mt }

+Wm
0

2

��

�z
[�{ei�mxei�m(z+ �z

2 )ei�m(t+�t) − ei�mxei�m(z− �z
2 )ei�m(t+�t)}

+(1 − �){ei�mxei�m(z+ �z
2 )ei�mt − ei�mxei�m(z− �z

2 )ei�mt }] = 0 (C4)

Divide Equations (C1)–(C4) by ei�mxei�mz , then note 	 = ei�m�t , i.e. Equation (39), and rearrange:

Um
0

�x
(ei�m�x/2 − e−i�m�x/2) + Wm

0

�z
(ei�m�z/2 − e−i�m�z/2) = 0 (C5)

g
�m

0

2
(ei�m�z/2 + e−i�m�z/2) + Pm

0

�z
(ei�m�z/2 − e−i�m�z/2) = 0 (C6)

Um
0

�t
(	 − 1) + Pm

0

�0�x
(ei�m�x/2 − e−i�m�x/2) = 0 (C7)

�m
0

�t
(	 − 1) + Wm

0

2

��

�z
[{�(	 − 1) + 1}{ei�m�z/2 + e−i�m�z/2}] = 0 (C8)

Recalling the identities

ei��z/2 + e−i��z/2 = 2 cos

(
��z

2

)
(C9)

ei��z/2 − e−i��z/2 = 2i sin

(
��z

2

)
(C10)
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Equations (C5)–(C8) can be written as

Um
0

�x
sin

(
�m

�x

2

/
2

)
Wm

0

�z
sin

(
�m

�z

2

)
= 0 (C11)

g�m
0 cos

(
�m

�z

2

)
+ 2iPm

0

�z
sin

(
�m

�z

2

)
= 0 (C12)

Um
0

�t
(	 − 1) + 2iPm

0

�0�x
sin

(
�m

�x

2

/
2

)
= 0 (C13)

�m
0

�t
(	 − 1) + Wm

0
��

�z

[
{�(	 − 1) + 1} cos

(
�m

�z

2

)]
= 0 (C14)

Equations (C11)–(C14) can be written in a matrix form A · v = 0 where

A=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

sin

(
�m

�x

2

)
�x

sin

(
�m

�z

2

)
�z

0 0

0 0
2i

�z
sin

(
�m

�z

2

)
g cos

(
�m

�z

2

)

(	 − 1)

�t
0

2i

�0�x
sin

(
�m

�x

2

)
0

0
��

�z

[
{�(	 − 1) + 1} cos

(
�m

�z

2

)]
0

(	 − 1)

�t

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(C15)

and

vT =[Um
0 ,Wm

0 , Pm
0 , Pm

0 ] (C16)

For solutions other than the trivial v = 0 it is necessary that |A| = 0, which provides the characteristic
equation

	2 + (�B2 − 2)	 + (1 + B2[1 − �]) = 0 (C17)

where

B = N�z
�t

�x
sin

(
�m

�x

2

)
cot

(
�m

�z

2

)
(C18)

i.e. the characteristic equation, (40), for the baroclinic forward-time method.
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